Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38405853

RESUMO

The histone H3K27 demethylase KDM6A is a tumor suppressor in multiple cancers, including multiple myeloma (MM). We created isogenic MM cells disrupted for KDM6A and tagged the endogenous protein to facilitate genome wide studies. KDM6A binds genes associated with immune recognition and cytokine signaling. Most importantly, KDM6A binds and activates NLRC5 and CIITA encoding regulators of Major Histocompatibility Complex (MHC) genes. Patient data indicate that NLRC5 and CIITA, are downregulated in MM with low KDM6A expression. Chromatin analysis shows that KDM6A binds poised and active enhancers and KDM6A loss led to decreased H3K27ac at enhancers, increased H3K27me3 levels in body of genes bound by KDM6A and decreased gene expression. Reestablishing histone acetylation with an HDAC3 inhibitor leads to upregulation of MHC expression, offering a strategy to restore immunogenicity of KDM6A deficient tumors. Loss of Kdm6a in murine RAS-transformed fibroblasts led to increased growth in vivo associated with decreased T cell infiltration. Statement of significance: We show that KDM6A participates in immune recognition of myeloma tumor cells by directly regulating the expression of the master regulators of MHC-I and II, NLRC5 and CIITA. The expression of these regulators can by rescued by the HDAC3 inhibitors in KDM6A-null cell lines.

2.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38063851

RESUMO

Cornelia de Lange syndrome (CdLS) is a congenital disorder featuring facial dysmorphism, postnatal growth deficits, cognitive disability and upper limb abnormalities. CdLS is genetically heterogeneous, with cases arising from mutation of BRD4, a bromodomain protein that binds and reads acetylated histones. In this study, we have modeled CdLS facial pathology through mouse neural crest cell (NCC)-specific mutation of BRD4 to characterize cellular and molecular function in craniofacial development. Mice with BRD4 NCC loss of function died at birth with severe facial hypoplasia, cleft palate, mid-facial clefting and exencephaly. Following migration, BRD4 mutant NCCs initiated RUNX2 expression for differentiation to osteoblast lineages but failed to induce downstream RUNX2 targets required for lineage commitment. BRD4 bound to active enhancers to regulate expression of osteogenic transcription factors and extracellular matrix components integral for bone formation. RUNX2 physically interacts with a C-terminal domain in the long isoform of BRD4 and can co-occupy osteogenic enhancers. This BRD4 association is required for RUNX2 recruitment and appropriate osteoblast differentiation. We conclude that BRD4 controls facial bone development through osteoblast enhancer regulation of the RUNX2 transcriptional program.


Assuntos
Síndrome de Cornélia de Lange , Fatores de Transcrição , Animais , Camundongos , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core , Síndrome de Cornélia de Lange/genética , Crista Neural/metabolismo , Proteínas Nucleares/metabolismo , Osteoblastos/metabolismo , Osteogênese , Fatores de Transcrição/metabolismo
3.
Birth Defects Res ; 115(20): 1885-1898, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37800171

RESUMO

BACKGROUND: Kabuki syndrome is a congenital developmental disorder that is characterized by distinctive facial gestalt and skeletal abnormalities. Although rare, the disorder shares clinical features with several related craniofacial syndromes that manifest from mutations in chromatin-modifying enzymes. Collectively, these clinical studies underscore the crucial, concerted functions of chromatin factors in shaping developmental genome structure and driving cellular transcriptional states. Kabuki syndrome predominantly results from mutations in KMT2D, a histone H3 lysine 4 methylase, or KDM6A, a histone H3 lysine 27 demethylase. AIMS: In this review, we summarize the research efforts to model Kabuki syndrome in vivo to understand the cellular and molecular mechanisms that lead to the craniofacial and skeletal pathogenesis that defines the disorder. DISCUSSION: As several studies have indicated the importance of KMT2D and KDM6A function through catalytic-independent mechanisms, we highlight noncanonical roles for these enzymes as recruitment centers for alternative chromatin and transcriptional machinery.


Assuntos
Deficiências do Desenvolvimento , Histonas , Lisina , Criança , Humanos , Cromatina/genética , Deficiências do Desenvolvimento/genética , Genômica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/genética , Lisina/genética , Anormalidades Craniofaciais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...